If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-40x-60=0
a = 5; b = -40; c = -60;
Δ = b2-4ac
Δ = -402-4·5·(-60)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-20\sqrt{7}}{2*5}=\frac{40-20\sqrt{7}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+20\sqrt{7}}{2*5}=\frac{40+20\sqrt{7}}{10} $
| x-6=x-1 | | 2n-11+3n=n+5 | | 10-4x+14=16 | | 1/3x=19 | | 0.4x-0.8x-35=1 | | 150=2w+30+2w | | 5/2x+1/2x=2x+15/2+5/2x | | y^2+9y+20=20 | | 2n+1+n=13 | | 3k*2(5k-3)=7 | | 12x=5.70x+150 | | 12x=5.70x=150 | | 24=3x•x-2 | | 8u+2=40 | | 4x+1/3=8/3 | | 50°+(10x-10)°=90° | | 3n+5=6+23 | | 12x=5.70+150 | | 5x2x3-8=13 | | 4(x+-6)+4=6x-4 | | 13x-5=18x+100 | | -17=v/12 | | 2w(4w+3)=3w | | 3a-13+10=0 | | 16+6x=3x+5x | | 20x=4x+180 | | 3(x-7)=5x+7 | | 2x5+24x=14x3 | | 7/2=c/11/7 | | ((3x+89)+(8x+58))=360 | | Y=24.50x+9.50 | | 3x+4x=108 |